题目内容

2.如图所示,边长为2的正方形ABCD所在的平面与△CDE所在的平面交于CD,且AE⊥平面CDE,AE=1.
(1)求证;平面ABCD⊥平面ADE;
(2)求几何体A-BDE的体积.

分析 (1)由AE⊥平面CDE得AE⊥CD,又CD⊥AD,故CD⊥平面ADE,于是平面ABCD⊥平面ADE;
(2)由AE⊥平面CDE得AE⊥DE,利用勾股定理计算DE,求出S△ADE,由CD⊥平面ADE,CD∥AB可知AB⊥平面ADE,故VA-BDE=VB-ADE=$\frac{1}{3}$S△ADE•AB.

解答 证明:(1)∵AE⊥平面CDE,CD?平面CDE,
∴AE⊥CD,
∵四边形ABCD是正方形,
∴CD⊥AD,又AD?平面ADE,AE?平面ADE,AD∩AE=A,
∴CD⊥平面ADE,∵CD?平面ABCD,
∴平面ABCD⊥平面ADE.
解:(2)∵AE⊥平面CDE,DE?平面CDE,
∴AE⊥DE,∴DE=$\sqrt{A{D}^{2}-A{E}^{2}}$=$\sqrt{3}$.
∴S△ADE=$\frac{1}{2}AE•DE$=$\frac{1}{2}×1×\sqrt{3}=\frac{\sqrt{3}}{2}$.
∵CD⊥平面ADE,CD∥AB,
∴AB⊥平面ADE,
∴VA-BDE=VB-ADE=$\frac{1}{3}$S△ADE•AB=$\frac{1}{3}×\frac{\sqrt{3}}{2}×2=\frac{\sqrt{3}}{3}$.

点评 本题考查了面面垂直的判定,线面垂直的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网