题目内容
(1)若数列{an+1-αan}是公比为β的等比数列,证明:数列{an+1-βan}是公比为α的等比数列;(a2-αa1≠0,a2-βa1≠0,αβ≠0)
(2)若an+1-4an=3n,a1=1
①求an
②证明:
+
+…+
<
.
(2)若an+1-4an=3n,a1=1
①求an
②证明:
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 4 |
| 3 |
考点:数列与不等式的综合,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得an+1-αan=β(an-2an-1)=βan-αβan-1,从而an+1-βan=α(an-βan-1),由此能证明数列{an+1-βan}是公比为α的等比数列.
(2)①由已知得数列{an+1-3an}是公比为4的等比数列,从而a2-3a1=4,由此能求出an=4n-3n.
②由已知得an=4n-3n≥4n-1,从而
≤
,由此能证明
+
+…+
<
.
(2)①由已知得数列{an+1-3an}是公比为4的等比数列,从而a2-3a1=4,由此能求出an=4n-3n.
②由已知得an=4n-3n≥4n-1,从而
| 1 |
| an |
| 1 |
| 4n-1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 4 |
| 3 |
解答:
(1)证明:∵数列{an+1-αan}是公比为β的等比数列,
∴an+1-αan=β(an-2an-1)=βan-αβan-1,
∴an+1-βan=α(an-βan-1),
且a2-βa1≠0,α≠0,
∴数列{an+1-βan}是公比为α的等比数列.
(2)①解:∵an+1-4an=3n,a1=1,
数列{an+1-4an}是公比为3的等比数列,
结合(1)的结论知:
数列{an+1-3an}是公比为4的等比数列,
a2-3a1=4,
∴an+1-3an=4n,
∵an+1-4an=3n,a1=1,
∴an=4n-3n.
②证明:∵an=4n-3n=4n-1+3•4n-1-3n-1
=4n-1+3(4n-1-3n-1)≥4n-1,
∴
≤
,
∴
+
+…+
<
+
+…+
=
=
-
×
<
.
∴
+
+…+
<
.
∴an+1-αan=β(an-2an-1)=βan-αβan-1,
∴an+1-βan=α(an-βan-1),
且a2-βa1≠0,α≠0,
∴数列{an+1-βan}是公比为α的等比数列.
(2)①解:∵an+1-4an=3n,a1=1,
数列{an+1-4an}是公比为3的等比数列,
结合(1)的结论知:
数列{an+1-3an}是公比为4的等比数列,
a2-3a1=4,
∴an+1-3an=4n,
∵an+1-4an=3n,a1=1,
∴an=4n-3n.
②证明:∵an=4n-3n=4n-1+3•4n-1-3n-1
=4n-1+3(4n-1-3n-1)≥4n-1,
∴
| 1 |
| an |
| 1 |
| 4n-1 |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
<
| 1 |
| 40 |
| 1 |
| 4 |
| 1 |
| 4n-1 |
=
1-(
| ||
1-
|
=
| 4 |
| 3 |
| 4 |
| 3 |
| 1 |
| 4n |
| 4 |
| 3 |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 4 |
| 3 |
点评:本题考查等比数列的证明,考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意等比数列的性质的合理运用.
练习册系列答案
相关题目