题目内容
抛物线C1:y=
x2(p>0)的焦点与双曲线C2:
-y2=1的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p= .
【解析】经过第一象限的双曲线的渐近线为y=
x.抛物线的焦点为F
,双曲线的右焦点为F2(2,0).y′=
x,由题意知在M
处的切线斜率为
,即
x0=
,所以x0=
p,点F
,F2(2,0),
M
共线,所以
=
,
即p=
.
答案:![]()
练习册系列答案
相关题目
题目内容
抛物线C1:y=
x2(p>0)的焦点与双曲线C2:
-y2=1的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p= .
【解析】经过第一象限的双曲线的渐近线为y=
x.抛物线的焦点为F
,双曲线的右焦点为F2(2,0).y′=
x,由题意知在M
处的切线斜率为
,即
x0=
,所以x0=
p,点F
,F2(2,0),
M
共线,所以
=
,
即p=
.
答案:![]()