题目内容
设集合,Z为整数集,则中元素的个数是
(A)3 (B)4 (C)5 (D)6
方程在区间上的解为___________.
已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)= —f(x);当x>时,f(x+)=f(x—).则f(6)=
(A)-2 (B)-1
(C)0 (D)2
已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 。
秦九韶是我国南宋使其的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为
(A)9 (B)18 (C)20 (D)35
如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=½AD。
(Ⅰ)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;
(Ⅱ)证明:平面PAB⊥平面PBD。
设直线l1,l2分别是函数图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B则则△PAB的面积的取值范围是
(A)(0,1) (B)(0,2) (C)(0,+∞) (D)(1,+ ∞)
设数列{an}的前n项和为Sn.若S2=4,an+1=2Sn+1,n∈N*,则a1= ,S5= .
如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:及其上一点A(2,4)
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;
(3)设点T(t,o)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围。