题目内容
5.Rt△ABC的角A,B,C所对的边分别是a,b,c(其中c为斜边),分别以a,b,c边所在的直线为旋转轴,将△ABC旋转一周得到的几何体的体积分别是V1,V2,V3,则( )| A. | V1+V2=V3 | B. | $\frac{1}{V_1}+\frac{1}{V_2}=\frac{1}{V_3}$ | ||
| C. | $V_1^2+V_2^2=V_3^2$ | D. | $\frac{1}{V_1^2}+\frac{1}{V_2^2}=\frac{1}{V_3^2}$ |
分析 利用直角三角形的三边分别为a、b、c,a2+b2=c2,c为斜边,分别求得V1、V2、V3的值,可得结论.
解答 解:因为直角三角形的三边分别为a、b、c,a2+b2=c2,即c为斜边,
则以边c所在直线为轴,将三角形旋转一周所得旋转体的体积为V3,则V3 =$\frac{1}{3}$π($\frac{ab}{c}$)2•c=$\frac{1}{3}$πa2•b2•$\frac{1}{c}$,
以边a所在直线为轴,将三角形旋转一周所得旋转体的体积为V1,则V1=$\frac{1}{3}$πb2•a,
以边b所在直线为轴,将三角形旋转一周所得旋转体的体积为V2,则V2=$\frac{1}{3}$πa2•b,
∴$\frac{1}{{V}_{1}^{2}}+\frac{1}{{V}_{2}^{2}}=\frac{1}{{V}_{3}^{2}}$,
故选:D.
点评 本题考查几何体的体积的求法与大小关系,考查计算能力,属于中档题.
练习册系列答案
相关题目
15.
“开门大吉”是某电视台推出的游戏益智节目.选手面对1-4号4扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.正确回答每一扇门后,选手可自由选择带着奖金离开比赛,还可继续挑战后面的门以获得更多奖金(奖金金额累加),但是一旦回答错误,奖金将清零,选手也会离开比赛.在一次场外调查中,发现参加比赛的选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否与年龄有关?说明你的理由.(下面的临界值表供参考)
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(理)(2)若某选手能正确回答第一、二、三、四扇门的概率分别为$\frac{4}{5}$,$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{3}$,正确回答一个问题后,选择继续回答下一个问题的概率是$\frac{1}{2}$,且各个问题回答正确与否互不影响.设该选手所获梦想基金总数为ξ,求ξ的分布列及数学期望.
每扇门对应的梦想基金:(单位:元)
(文)(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中至少有一人在20~30岁之间的概率.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否与年龄有关?说明你的理由.(下面的临界值表供参考)
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(理)(2)若某选手能正确回答第一、二、三、四扇门的概率分别为$\frac{4}{5}$,$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{3}$,正确回答一个问题后,选择继续回答下一个问题的概率是$\frac{1}{2}$,且各个问题回答正确与否互不影响.设该选手所获梦想基金总数为ξ,求ξ的分布列及数学期望.
| 第一扇门 | 第二扇门 | 第三扇门 | 第四扇门 |
| 1000 | 2000 | 3000 | 5000 |
(文)(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中至少有一人在20~30岁之间的概率.
17.双曲线x2-3y2=9的焦距为( )
| A. | 4$\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{6}$ | D. | $\sqrt{6}$ |
15.在△ABC中,a=9,b=3$\sqrt{3}$; A=120°,则sin(π-B)等于( )
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | -$\frac{{\sqrt{3}}}{2}$ |