题目内容

8.若x>0,y>0,则$\frac{x}{x+2y}+\frac{y}{x}$的最小值为$\sqrt{2}-\frac{1}{2}$.

分析 设$\frac{y}{x}$=t>0,变形$\frac{x}{x+2y}+\frac{y}{x}$=$\frac{1}{1+2t}$+t=$\frac{1}{1+2t}$+$\frac{1}{2}(2t+1)$-$\frac{1}{2}$,再利用基本不等式的性质即可得出.

解答 解:设$\frac{y}{x}$=t>0,则$\frac{x}{x+2y}+\frac{y}{x}$=$\frac{1}{1+2t}$+t=$\frac{1}{1+2t}$+$\frac{1}{2}(2t+1)$-$\frac{1}{2}$≥$2\sqrt{\frac{1}{1+2t}×\frac{1+2t}{2}}$-$\frac{1}{2}$=$\sqrt{2}$-$\frac{1}{2}$,当且仅当$t=\frac{\sqrt{2}-1}{2}$=$\frac{y}{x}$时取等号.
故答案为:$\sqrt{2}$-$\frac{1}{2}$.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网