题目内容
9.写出命题“存在x∈(0,+∞),使得lnx>x-1”的否定:对任意x∈(0,+∞),都有lnx≤x-1..分析 利用特称命题的否定是全称命题推出结果即可.
解答 解:因为特称命题的否定是全称命题,所以,命题“存在x∈(0,+∞),使得lnx>x-1”的否定:对任意x∈(0,+∞),都有lnx≤x-1.
故答案为:对任意x∈(0,+∞),都有lnx≤x-1.
点评 本题考查命题的否定,全称命题与特称命题否定关系,是基础题.
练习册系列答案
相关题目
20.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的最小正周期为π,把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个长度单位,得到函数g(x)的解析式为( )
| A. | g(x)=2sin(2x+$\frac{2π}{3}$) | B. | g(x)=2sin(2x-$\frac{π}{6}$) | C. | g(x)=2sin2x | D. | g(x)=2cos2x |
4.动点P到两定点F1(0,-4),F2(0,4)的距离之和为10,则动点P的轨迹方程是( )
| A. | $\frac{x^2}{16}+\frac{y^2}{9}=1$ | B. | $\frac{x^2}{9}+\frac{y^2}{25}=1$ | C. | $\frac{x^2}{16}+\frac{y^2}{25}=1$ | D. | $\frac{x^2}{100}+\frac{y^2}{36}=1$ |
14.若x,y满足约束条件$\left\{\begin{array}{l}{2x+y-2≤0}\\{3x-y-3≤0}\\{x≥0}\end{array}\right.$,则z=x-y的最小值为( )
| A. | -3 | B. | 1 | C. | -2 | D. | 2 |
18.已知函数f(x)=(x-x1)(x-x2)(x-x3)(其中x1<x2<x3),g(x)=3x+sin(2x+1),且函数f(x)的两个极值点为α,β(α<β).设λ=$\frac{{x}_{1}+{x}_{2}}{2}$,μ=$\frac{{x}_{2}+{x}_{3}}{2}$,则( )
| A. | g(a)<g(λ)<g(β)<g(μ) | B. | g(λ)<g(a)<g(β)<g(μ) | C. | g(λ)<g(a)<g(μ)<g(β) | D. | g(a)<g(λ)<g(μ)<g(β) |
19.某学校为挑选参加地区汉字听写大赛的学生代表,从全校报名的1200人中筛选出300人参加听写比赛,然后按听写比赛成绩择优选取75人再参加诵读比赛.
(1)从参加听写比赛的学生中随机抽取了24名学生的比赛成绩整理成表:
请你根据该样本数据估计进入诵读比赛的分数线大约是多少?
(2)若学校决定,从诵读比赛的女生的前4名a,b,c,d和男生的前两名e,f中挑选两名学生作为代表队队长,请你求出队长恰好为一男一女的概率.
(1)从参加听写比赛的学生中随机抽取了24名学生的比赛成绩整理成表:
| 分数段 | [60,65) | [65,70) | [70,75) | [75,80) | [80,85) | [85,90) | [90,95] |
| 1 | 2 | 6 | 9 | 4 | 1 | 1 |
(2)若学校决定,从诵读比赛的女生的前4名a,b,c,d和男生的前两名e,f中挑选两名学生作为代表队队长,请你求出队长恰好为一男一女的概率.