题目内容

12.等差数列{an}中,若已知a2=14,a5=5.
(Ⅰ)求数列{an}的通项公式an;     
(Ⅱ)求前10项和S10

分析 (I)利用等差数列的通项公式即可得出.
(II)利用等差数列的求和公式即可得出.

解答 解:(I)设等差数列首项为a1,公差为d.则$\left\{\begin{array}{l}{a_2}={a_1}+d=14\\{a_5}={a_1}+4d=5\end{array}\right.$,解得$\left\{\begin{array}{l}{a_1}=17\\ d=-3\end{array}\right.$,
∴an=20-3n.
(II)${S_{10}}=10×17+\frac{10(10-1)}{2}×(-3)=35$.

点评 本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网