题目内容
定义在N+上的函数f(x),满足f(n+1)=
,
(1)若f(11)=
,则f(1) .
(2)若f(1)=1,则f(2n)= (用含n的式子表示).
|
(1)若f(11)=
| 1 |
| 4 |
(2)若f(1)=1,则f(2n)=
分析:根据分段函数的表达式进行推理即可.然后利用归纳推理的知识进行推理.
解答:解:(1)∵f(11)=f(10+1)=
f(5)=
f(4+1)=
×
f(2)=
f(1+1)=
f(1)=
,
∴f(1)=1.
(2)∵2n是偶数,
∵f(1)=1,
∴f(2)=f(1+1)=f(1)=1,
f(3)=
f(2)=
f(4)=f(3+1)=f(3)=
,
f(8)=f(7+1)=f(7)=f(6+1)=
f(3)=
×
=
=
f(16)=f(15+1)=f(15)=f(14+1)=
f(7)=
×
f(3)=
×
×
=
=
f(32)=f(31+1)=f(31)=f(30+1)=
f(15)=
×
f(7)=
×
×
f(3)=
×
×
×
=
,
∴由归纳推理可知f(2n)=
.
故答案为:1,
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
∴f(1)=1.
(2)∵2n是偶数,
∵f(1)=1,
∴f(2)=f(1+1)=f(1)=1,
f(3)=
| 1 |
| 2 |
| 1 |
| 2 |
f(4)=f(3+1)=f(3)=
| 1 |
| 2 |
f(8)=f(7+1)=f(7)=f(6+1)=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 22 |
f(16)=f(15+1)=f(15)=f(14+1)=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 8 |
| 1 |
| 23 |
f(32)=f(31+1)=f(31)=f(30+1)=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 24 |
∴由归纳推理可知f(2n)=
| 1 |
| 2n-1 |
故答案为:1,
| 1 |
| 2n-1 |
点评:本题主要考查归纳推理的应用,根据条件求出几个函数值的取值,然后归纳出取值规律是解决本题的关键.考查学生的观察能力.
练习册系列答案
相关题目