题目内容

f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0),若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,则a的取值范围是______.
f(x)=
2x2
x+1

当x=0时,f(x)=0,
当x≠0时,f(x)=
2
1
x
+(
1
x
)
2
=
2
(
1
x
+
1
2
)2-
1
4

由0<x≤1,∴0<f(x)≤1.
故0≤f(x)≤1
又因为g(x)=ax+5-2a(a>0),且g(0)=5-2a,g(1)=5-a.
故5-2a≤g(x)≤5-a.
所以须满足
5-2a≤0
5-a≥1

5
2
≤a≤4,
故答案为
5
2
≤a≤4.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网