题目内容
设f(x)=| 2x2 | x+1 |
(1)求f(x)在x∈[0,1]上的值域;
(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.
分析:(1)求f(x)的值域问题可用导数法;注意到分母为x2,可分子分母同除以x2,将分母变为关于
的二次函数解决;
还可以将分母换元,转化为用双钩函数求最值.
(2)对于任意x1∈[0,1],f(x1)范围由(1)可知,由题意即g(x)的值域包含f(x)的值域,转化为集合的关系问题.
| 1 |
| x |
还可以将分母换元,转化为用双钩函数求最值.
(2)对于任意x1∈[0,1],f(x1)范围由(1)可知,由题意即g(x)的值域包含f(x)的值域,转化为集合的关系问题.
解答:解:(1)法一:(导数法)f′(x)=
=
≥0在x∈[0,1]上恒成立.
∴f(x)在[0,1]上增,
∴f(x)值域[0,1].
法二:f(x)=
,用复合函数求值域.
法三:f(x)=
=2(x+1)+
-4
用双勾函数求值域.
(2)f(x)值域[0,1],g(x)=ax+5-2a(a>0)在x∈[0,1]上的值域[5-2a,5-a].
由条件,只须[0,1]⊆[5-2a,5-a].
∴
?
≤a≤4.
| 4x(x+1)-2x2 |
| (x+1)2 |
| 2x2+4x |
| (x+1)2 |
∴f(x)在[0,1]上增,
∴f(x)值域[0,1].
法二:f(x)=
|
法三:f(x)=
| 2x2 |
| x+1 |
| 2 |
| x+1 |
用双勾函数求值域.
(2)f(x)值域[0,1],g(x)=ax+5-2a(a>0)在x∈[0,1]上的值域[5-2a,5-a].
由条件,只须[0,1]⊆[5-2a,5-a].
∴
|
| 5 |
| 2 |
点评:本题考查函数的值域问题,任意性和存在性命题问题,考查对题目的理解和转化能力.
练习册系列答案
相关题目
设f(x)=
,g(x)=ax+5-2a(a>0),若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,则实数a的取值范围是( )
| 2x2 |
| x+1 |
A、[
| ||||
B、[-
| ||||
| C、[1,4] | ||||
D、[
|
设f(x)=
,g(x)=ax+5-2a(a>0),若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,则a的取值范围是( )
| 2x2 |
| x+1 |
A、[
| ||
| B、[4,+∞) | ||
C、(0,
| ||
D、[
|