题目内容
求证:| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
分析:利用放缩法来证明,将其变形为
>
=
-
,然后用叠加法得证.
| 1 |
| n2 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:
证明:∵n2<n•(n+1),∴
>
=
-
∴
>
-
,
>
-
,…
∴
+
+…+
>
-
+
-
+…+
-
即∴
+
+…+
>
-
故
-
<
+
+…+
,即证.
证明:∵n2<n•(n+1),∴
| 1 |
| n2 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 |
| 22 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3 |
| 1 |
| 4 |
∴
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
即∴
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 2 |
| 1 |
| n+1 |
故
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
点评:此题主要考查不等式的放缩法,同时还运用了叠加法.
练习册系列答案
相关题目