题目内容
(1)当n∈N+时,求证:| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
(2)当n∈N+时,求证:1+
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
分析:(1)利用
+
+
+…+
≤
+
+…+
<
+
+…+
,进行放缩.
(2)利用 1+
+
+…+
<1+
+
+
+…+
=1+1-
+
-
+
-
+…+
-
=2-
,得到要证的结果.
| 1 |
| 2n |
| 1 |
| 2n |
| 1 |
| 2n |
| 1 |
| 2n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
(2)利用 1+
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| (n-1)×n |
=1+1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
解答:解:(1)证明:∵
+
+
+…+
≤
+
+…+
<
+
+…+
,
∴
≤
+
+…+
<1,故不等式成立.
(2)证明:∵1+
+
+…+
<1+
+
+
+…+
=1+1-
+
-
+
-
+…+
-
=2-
<2,
即 1+
+
+…+
<2.
| 1 |
| 2n |
| 1 |
| 2n |
| 1 |
| 2n |
| 1 |
| 2n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
∴
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
(2)证明:∵1+
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| (n-1)×n |
=1+1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
即 1+
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
点评:本题考查用放缩法证明不等式,掌握好放缩的程度,是解题的难点.
练习册系列答案
相关题目