题目内容
若n∈N+,n≥2,求证:
-
<
+
+…+
<1-
.
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| n |
证明:∵
+
+…+
>
+
+…+
=
-
+
-
+…+
-
=
-
;
又
+
+…+
<
+
+
+…+
=1-
+
-
+
-…+
-
<1-
;
所以
-
<
+
+…+
<1-
.
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| n+1 |
又
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| (n-1)n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
所以
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| n |
练习册系列答案
相关题目