题目内容
已知数列{an}的前n项和为Sn,且满足a1=
,(4n-1)an=3•4n-1Sn.
(Ⅰ)求数列{Sn}的通项公式;
(Ⅱ)设bn=
,若Tn为数列{bn}的前n项和,求
Tn的值.
| 4 |
| 3 |
(Ⅰ)求数列{Sn}的通项公式;
(Ⅱ)设bn=
| n |
| 3an |
| lim |
| n→∞ |
考点:数列的求和,数列递推式
专题:综合题,等差数列与等比数列
分析:(Ⅰ)n≥2时,把an=Sn-Sn-1代入已知等式可整理为(4n-1-1)Sn=(4n-1)Sn-1,亦即
=
,从而知数列{
}是公比为1的等比数列,于是可求
,进而可得Sn;
(Ⅱ)由(Ⅰ)可求an,进而可得bn,利用错位相减法可求Tn,进而可求求
Tn的值;
| Sn |
| 4n-1 |
| Sn-1 |
| 4n-1-1 |
| Sn |
| 4n-1 |
| Sn |
| 4n-1 |
(Ⅱ)由(Ⅰ)可求an,进而可得bn,利用错位相减法可求Tn,进而可求求
| lim |
| n→∞ |
解答:
解:(Ⅰ)当n≥2时,an=Sn-Sn-1,
∴n≥2时,3•4n-1Sn=(4n-1)(Sn-Sn-1),整理得(4n-1-1)Sn=(4n-1)Sn-1,
∴
=
,
∴数列{
}是公比为1的等比数列,
∴
=
=
,
∴Sn=
(4n-1).(n∈N+)
(Ⅱ)将Sn=
(4n-1)代入(4n-1)an=3•4n-1Sn.
得an=
,bn=
=
,
Tn=
+
+
+…+
,
Tn=
+
+
+…+
,
两式相减得,
Tn=
+
+
+…+
-
=
-
=
-
-
,
∴Tn=
-
,
Tn=
.
∴n≥2时,3•4n-1Sn=(4n-1)(Sn-Sn-1),整理得(4n-1-1)Sn=(4n-1)Sn-1,
∴
| Sn |
| 4n-1 |
| Sn-1 |
| 4n-1-1 |
∴数列{
| Sn |
| 4n-1 |
∴
| Sn |
| 4n-1 |
| S1 |
| 3 |
| 4 |
| 9 |
∴Sn=
| 4 |
| 9 |
(Ⅱ)将Sn=
| 4 |
| 9 |
得an=
| 4n |
| 3 |
| n |
| 3an |
| n |
| 4n |
Tn=
| 1 |
| 4 |
| 2 |
| 42 |
| 3 |
| 43 |
| n |
| 4n |
| 1 |
| 4 |
| 1 |
| 42 |
| 2 |
| 43 |
| 3 |
| 44 |
| n |
| 4n+1 |
两式相减得,
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 43 |
| 1 |
| 4n |
| n |
| 4n+1 |
=
| ||||
1-
|
| n |
| 4n+1 |
| 1 |
| 3 |
| 1 |
| 3•4n |
| n |
| 4n+1 |
∴Tn=
| 4 |
| 9 |
| 3n+4 |
| 9•4n |
| lim |
| n→∞ |
| 4 |
| 9 |
点评:该题考查由递推式求数列通项、数列求和及数列极限问题,错位相减法是数列求和的重要方法,要熟练掌握.
练习册系列答案
相关题目