题目内容

【题目】如图,平面四边形ABCD中,AB= ,AD=2 ,CD= ,∠CBD=30°,∠BCD=120°.

(1)求BD的长;
(2)求∠ADC的度数.

【答案】
(1)

解:方法一:在△BCD中,由正弦定理得:

,即

解得BD=3

方法二:由已知得∠BDC=30°,故

由余弦定理得:

BD2=CD2+BC2﹣2CDBCcos∠BCD

=

∴BD=3


(2)

解:在△ABD中,由余弦定理得:

∴∠ADB=45° …(8分)

由已知∠BDC=30°…(9分)

∴∠ADC=∠ADB+∠BDC=45°+30°=75°


【解析】(1)方法一:在△BCD中,由题意和正弦定理求出BD;方法二:由∠BDC=30°求出BC,利用条件和余弦定理列出方程,求出BD;(2)在△ABD中,利用条件和余弦定理求出cos∠ADB的值,结合图象求出∠ADC的度数.
【考点精析】通过灵活运用正弦定理的定义和余弦定理的定义,掌握正弦定理:;余弦定理:;;即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网