题目内容

已知cos(α+β)cosα+sin(α+β)sinα=-
4
5
且450°<β<540°,求cos2β和sin(
3
+2β).
分析:先利用余弦的两角和公式对题设等式化简整理求得cosβ的值,利用二倍角公式求得cos2β,进而利用同角三角函数基本关系及β的范围求得sin2β的值,进而利用正弦的两角和公式求得sin(
3
+2β)的值.
解答:解:cos(α+β)cosα+sin(α+β)sinα=cos(α+β-α)=cosβ=-
4
5

∴cos2β=2cos2β=
7
25

∵450°<β<540°
∴900°<2β<1080°
∴sin2β=
1-(
7
25
)
2
=
24
25

∴sin(
3
+2β)=sin
3
cos2β+cos
3
sin2β=
24+7
3
50
点评:本题主要考查了两角和与差正弦和余弦,同角三角函数基本关系等知识点.考查了学生综合运用所学知识的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网