题目内容
14.下列函数是奇函数的是( )| A. | y=xsinx | B. | y=x2cosx | C. | y=$\frac{sinx}{x}$ | D. | y=$\frac{cosx}{x}$ |
分析 根据函数奇偶性的定义进行判断即可.
解答 解:A,y=xsinx为偶函数,不满足条件.
B.函数y=x2cosx为偶函数,不满足条件.
C.y=$\frac{sinx}{x}$为偶函数,不满足条件.
D.y=$\frac{cosx}{x}$为奇函数,满足条件.
故选:D.
点评 本题主要考查函数奇偶性的判断,要求熟练掌握常见函数的奇偶性,比较基础.
练习册系列答案
相关题目
4.“m=1”是“直线(m-2)x-3my-1=0与直线(m+2)x+(m-2)y+3=0相互垂直”的( )
| A. | 必要而不充分条件 | B. | 充分而不必要条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
9.下列向量组中,能作为它们所在平面内所有向量的基底的是( )
| A. | $\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(0,0) | B. | $\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,-4) | C. | $\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(3,6) | D. | $\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,2) |
6.已知满足条件x2+y2≤1的点(x,y)构成的平面区域的面积为S1,满足条件[x2]+[y]2≤1的点(x,y)构成的平面区域的面积为S2,(其中[x]、[y]分别表示不大于x、y的最大整数),则点(S1,S2)一定在( )
| A. | 直线x-y=0上 | B. | 直线2x-y-1=0右下方的区域内 | ||
| C. | 直线x+y-8=0左下方的区域内 | D. | 直线x-y+2=0左上方的区域内 |