题目内容
14.在某项测试中,测量结果X服从正态分布N(1,σ2),若P(X<0)=0.2,则P(0<X<2)=0.6.分析 随机变量X服从正态分布N(1,σ2),得到曲线关于X=1称,根据曲线的对称性得到P(0<X<2)=2[0.5-P(X<0)],即可得到结果.
解答 解:随机变量X服从正态分布N(1,σ2),
∴曲线关于X=1对称,
∵P(X<0)=0.2,
∴P(0<X<2)=2(0.5-0.2)=0.6,
故答案为:0.6.
点评 本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.
练习册系列答案
相关题目
4.函数y=sin(x+17°)-sin(x+257°)的最大值为( )
| A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
19.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取100人做调查,得到如下2×2列联表:
已知在这100人中随机抽取一人抽到喜欢游泳的学生的概率为$\frac{3}{5}$.
(Ⅰ)请将上述列联表补充完整,并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(Ⅱ)针对问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选两人作为宣传组的组长,求这两人中至少有一名女生的概率.
参考公式:${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$,其中n=n11+n12+n21+n22.
参考数据:
| 喜欢游泳 | 不喜欢游泳 | 合计 | |
| 男生 | 40 | 10 | 50 |
| 女生 | 20 | 30 | 50 |
| 合计 | 60 | 40 | 100 |
(Ⅰ)请将上述列联表补充完整,并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(Ⅱ)针对问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选两人作为宣传组的组长,求这两人中至少有一名女生的概率.
参考公式:${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$,其中n=n11+n12+n21+n22.
参考数据:
| P(Χ2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
3.在空间中,下列命题正确的是( )
| A. | 平行于同一平面的两条直线平行 | B. | 平行于同一直线的两个平面平行 | ||
| C. | 垂直于同一直线的两条直线平行 | D. | 垂直于同一平面的两条直线平行 |