题目内容
12.已知x,y∈R,向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线,若(x+y-2)$\overrightarrow{a}$+(x-y+3)$\overrightarrow{b}$=0,则x=$-\frac{1}{2}$,y=$\frac{5}{2}$.分析 $\overrightarrow{0}=0•\overrightarrow{a}+0•\overrightarrow{b}$,而$\overrightarrow{a},\overrightarrow{b}$不共线,从而可由平面向量基本定理得到$\left\{\begin{array}{l}{x+y-2=0}\\{x-y+3=0}\end{array}\right.$,这样解该方程组便可得出x,y的值.
解答 解:∵$\overrightarrow{a},\overrightarrow{b}$不共线;
∴根据平面向量基本定理,由$(x+y-2)\overrightarrow{a}+(x-y+3)\overrightarrow{b}=\overrightarrow{0}$得:
$\left\{\begin{array}{l}{x+y-2=0}\\{x-y+3=0}\end{array}\right.$;
解得$\left\{\begin{array}{l}{x=-\frac{1}{2}}\\{y=\frac{5}{2}}\end{array}\right.$.
故答案为:$-\frac{1}{2},\frac{5}{2}$.
点评 考查平面向量基本定理,知道$\overrightarrow{0}=0•\overrightarrow{a}+0•\overrightarrow{b}$.
练习册系列答案
相关题目
3.已知向量$\overrightarrow{CA}$,$\overrightarrow{CB}$,满足|$\overrightarrow{CA}$|=1,∠ACB=$\frac{π}{2}$,若关于实数x的函数f(x)=|x$\overrightarrow{CA}$+2$\overrightarrow{CB}$|-|$\overrightarrow{CB}$$+\overrightarrow{CA}$|,有唯一的零点,已M为AB的中点,则$\overrightarrow{MA}$$•\overrightarrow{MB}$=( )
| A. | -$\frac{1}{3}$ | B. | -$\frac{1}{4}$ | C. | -$\frac{4}{9}$ | D. | -1 |