题目内容
14.已知数列{an}满足:a1=4,an+1=$\frac{n+2}{n}$an+4+$\frac{4}{n}$(n∈N*),则an=5n2+n-2.分析 a1=4,an+1=$\frac{n+2}{n}$an+4+$\frac{4}{n}$(n∈N*),$\frac{{a}_{n+1}}{(n+1)(n+2)}$-$\frac{{a}_{n}}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+2})$,利用“裂项求和“即可得出.
解答 解:∵a1=4,an+1=$\frac{n+2}{n}$an+4+$\frac{4}{n}$(n∈N*),∴$\frac{{a}_{n+1}}{(n+1)(n+2)}$-$\frac{{a}_{n}}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+2})$,
∴$\frac{{a}_{n}}{n(n+1)}$=2$[(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n-2}-\frac{1}{n})$+$(\frac{1}{n-3}-\frac{1}{n-1})$+…+$(\frac{1}{2}-\frac{1}{4})$+$(1-\frac{1}{3})]$+2
=2$(\frac{3}{2}-\frac{1}{n}-\frac{1}{n+1})$+2=5-$\frac{2(2n+1)}{n(n+1)}$.
∴an=5n(n+1)-(4n+2)=5n2+n-2.
故答案为:5n2+n-2.
点评 本题考查了数列递推关系、“裂项求和“方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
1.若集合M={y∈N|y<6},N={x|log2(x-1)≤2},则M∩N=( )
| A. | (1,5] | B. | (-∞,5] | C. | {1,2,3,4,5} | D. | {2,3,4,5} |
4.等差数列{an}满足a1=39,a1+a3=74,则通项公式an=( )
| A. | -2n+41 | B. | -2n+39 | C. | -n2+40n | D. | -n2-40n |