题目内容

10.已知等差数列{an}中,a2=3,a4=7,若bn=a2n
(1)求bn
(2)求$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n项和.

分析 (1)根据等差数列的定义求出公差d=2,再求出首项,即可求出bn
(2)根据裂项求和即可求出答案.

解答 解:(1)等差数列{an}中,a2=3,a4=7,
∴a4=a2+2d,
∴7=3+2d,
解得d=2,
∴a1=a2-d=1,
∴bn=a2n=1+2(2n-1)=4n-1,
(2)由(1)可得an=1+2(n-1)=2n-1,
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n项和为$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$.

点评 本题考查了等差数列的通项公式和裂项求和,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网