题目内容


甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.

(1)求甲在4局以内(含4局)赢得比赛的概率;

(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).


解 用A表示“甲在4局以内(含4局)赢得比赛”,Ak表示“第k局甲获胜”,Bk表示“第k局乙获胜”,则P(Ak)=,P(Bk)=,k=1,2,3,4,5.

(1)P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4)

=P(A1)P(A2)+P(B1)P(A2)P(A3)+P(A1)P(B2)·P(A3)P(A4)

(2)X的可能取值为2,3,4,5.

P(X=2)=P(A1A2)+P(B1B2)=P(A1)P(A2)+P(B1)P(B2)=

P(X=3)=P(B1A2A3)+P(A1B2B3)

=P(B1)P(A2)P(A3)+P(A1)P(B2)P(B3)=

P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)

=P(A1)P(B2)P(A3)P(A4)

+P(B1)P(A2)P(B3)·P(B4)=.

P(X=5)=1-P(X=2)-P(X=3)-P(X=4)=.

故X的分布列为

X

2

3

4

5

P

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网