题目内容

已知点O(0,0),A0(0,1),An(6,7),点A1,A2,…,An-1(n∈N,n≥2)是线段A0An的n等分点,则|
OA0
+
OA1
+…+
OAn-1
+
OAn
|等于(  )
A、5nB、10n
C、5(n+1)D、10(n+1)
考点:向量的加法及其几何意义
专题:平面向量及应用
分析:利用向量的三角形法则、向量共线定理及其模的计算公式即可得出.
解答: 解:如图所示,
∵点A1,A2,…,An-1(n∈N,n≥2)是线段A0An的n等分点,
A0A1
=
1
n
A0An
A0A2
=
2
n
A0An
,…,
A0An-1
=
A0An

OA1
=
OA0
+
A0A1

OA2
=
OA0
+
A0A2

…,
OAn
=
OA0
+
A0An

OA0
+
OA1
+
OA2
+…+
OAn

=
OA0
+(
OA0
+
1
n
A0An
)
+(
OA0
+
2
n
A0An
)
+…+(
OA0
+
n
n
A0An
)

=(n+1)
OA0
+
1+2+…+n
n
A0An

=(n+1)(0,1)+
n(1+n)
2n
(6-0,7-1)

=(n+1)(3,4),
|
OA0
+
OA1
+
OA2
+…+
OAn
|=(n+1)
32+42
=5(n+1).
故选:C.
点评:本题考查了向量的三角形法则、向量共线定理及其模的计算公式,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网