题目内容
已知函数的图像如图,则( )
A. B. C. D.
已知平面向量,满足,与的夹角为,则 .
已知是钝角,,则 .
若圆C与圆关于直线对称,则圆C的方程是 .
经过双曲线的一个焦点作垂直于实轴的直线,交双曲线与A,B两点,交双曲线的渐近线于P,Q两点,若,则双曲线的离心率是( )
(本小题满分14分)已知椭圆的右焦点为,且点在椭圆上,为坐标原点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且为锐角,求直线的斜率的取值范围;
(Ⅲ)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为(不在坐标轴上),若直线在轴、轴上的截距分别为、,证明:为定值.
已知向量满足,则向量与夹角的余弦值为 .
(本小题满分12分)如图,在多面体中,底面是边长为的的菱形,,四边形是矩形,平面平面,,和分别是和的中点.
(Ⅰ)求证:平面平面;
(Ⅱ)求二面角的大小.
某高中共有人,其中高一、高二、高三年级的人数依次成等差数列.现用分层抽样
的方法从中抽取人,那么高二年级被抽取的人数为 .