题目内容
已知,,满足,则
A. B.
C. D.
(几何证明选讲选做题)如图1,BE、CF分别为钝角△ABC的两条高,已知,,
,则BC边的长为 .
如图,四面体的一条棱长为,其余棱长均为1,记四面体的体积为,则函数的单调增区间是____;最大值为____.
(本小题满分14分)如图,在三棱柱中,各个侧面均是边长为的正方形,为线段的中点.
(Ⅰ)求证:⊥平面;
(Ⅱ)求证:直线∥平面;
(Ⅲ)设为线段上任意一点,在内的平面区域(包括边界)是否存在点,使,并说明理由.
已知平面向量,满足,与的夹角为,则 .
(本小题满分13分)已知数列满足:
(Ⅰ)当时,求数列的通项公式;
(Ⅱ)在(Ⅰ)的条件下,若数列满足为数列的前项和,求证:对任意.
已知集合,集合,若,则实数的取值范围是 .
(本题14分)已知数列满足:,.
(1)求数列的通项公式;
(2)若,求数列的前项和.
(本小题满分14分)已知椭圆的右焦点为,且点在椭圆上,为坐标原点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且为锐角,求直线的斜率的取值范围;
(Ⅲ)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为(不在坐标轴上),若直线在轴、轴上的截距分别为、,证明:为定值.