题目内容
如图,在三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

(1)证明:AB⊥A1C;
(2)若AB=CB=2,A1C=
,求三棱柱ABC-A1B1C1的体积;
(3)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.
(1)证明:AB⊥A1C;
(2)若AB=CB=2,A1C=
(3)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.
(1)见解析(2)3(3)
(1)如图,取AB的中点O,连接CO,A1O.

∵CA=CB,∴CO⊥AB,
又∵AA1=AB,得AA1=2AO,
又∠A1AO=60°,
∴∠AOA1=90°,即AB⊥A1O,
∴AB⊥平面A1OC,又A1C?平面A1OC,
∴AB⊥A1C.
(2)∵AB=CB=2=AC,∴CO=
,
又A1A=AB=2,∠BAA1=60°,
∴在等边三角形AA1B中,A1O=
,
∵A1C2=A1O2+CO2=6,
∴∠COA1=90°,即A1O⊥CO,
∴A1O⊥平面ABC,
∴VABC-A1B1C1=
×22×
=3.
(3)作辅助线同(1)
以O为原点,OA所在直线为x轴,OA1所在直线为y轴,OC所在直线为z轴,建立如图直角坐标系,则A(1,0,0),A1(0,
,0),B(-1,0,0),C(0,0,
),B1(-2,
,0),则
=(1,0,
),
=(-1,
,0),
=(0,-
,
),设n=(x,y,z)为平面BB1C1C的法向量,则
即
所以n=(
,1,-1),
则cos<n,
=
=-
,
所以A1C与平面BB1C1C所成角的正弦值为
.
∵CA=CB,∴CO⊥AB,
又∵AA1=AB,得AA1=2AO,
又∠A1AO=60°,
∴∠AOA1=90°,即AB⊥A1O,
∴AB⊥平面A1OC,又A1C?平面A1OC,
∴AB⊥A1C.
(2)∵AB=CB=2=AC,∴CO=
又A1A=AB=2,∠BAA1=60°,
∴在等边三角形AA1B中,A1O=
∵A1C2=A1O2+CO2=6,
∴∠COA1=90°,即A1O⊥CO,
∴A1O⊥平面ABC,
∴VABC-A1B1C1=
(3)作辅助线同(1)
以O为原点,OA所在直线为x轴,OA1所在直线为y轴,OC所在直线为z轴,建立如图直角坐标系,则A(1,0,0),A1(0,
则cos<n,
所以A1C与平面BB1C1C所成角的正弦值为
练习册系列答案
相关题目