题目内容
1.在R上定义运算?:x?y=x(1-y),要使不等式(x-a)?(x+a)>1成立,则实数a的取值范围是( )| A. | -1<a<1 | B. | 0<a<2 | C. | $a<-\frac{1}{2}$或$a>\frac{3}{2}$ | D. | $-\frac{1}{2}<a<\frac{3}{2}$ |
分析 利用新定义化简不等式可得到a2-a-1>x2-x成立即可,只需a2-a-1>x2-x的最小值即可,由二次函数求最值可得a的不等式,解不等式可得.
解答 解:由已知(x-a)?(x+a)>1成立,
∴(x-a)(1-x-a)>1成立,
即a2-a-1>x2-x成立.
令t=x2-x,只要a2-a-1>tmin.
t=x2-x=(x-$\frac{1}{2}$)2-$\frac{1}{4}$,当x∈R,t≥-$\frac{1}{4}$.
∴a2-a-1>-$\frac{1}{4}$,即4a2-4a-3>0,
解得:a>$\frac{3}{2}$或a<-$\frac{1}{2}$.
故选:C.
点评 本题考查新定义,涉及一元二次不等式的解集和恒成立问题,属基础题.
练习册系列答案
相关题目
11.函数$f(x)=\frac{1}{{\sqrt{1-{2^x}}}}$的定义域是( )
| A. | {x|x≥0} | B. | {x|x≤0} | C. | {x|x>0} | D. | {x|x<0} |
9.有一长为1km的斜坡,它的坡角为20°,现不改变坡的高度,填土将坡角改为10°,则斜坡变为( )
| A. | 2cos10° | B. | 2sin10° | C. | cos20° | D. | 1 |
13.设数列的通项公式是an=$\frac{n-t(t-1)}{n-{t}^{2}}$,若a3最大,a4最小,则实数t的取值范围为( )
| A. | ($\sqrt{3}$,2) | B. | (1,2) | C. | (-2,-$\sqrt{3}$)∪($\sqrt{3}$,2) | D. | (-2,-$\sqrt{3}$) |
11.如果角α的终边经过点P(sin780°,cos(-330°)),则sinα=( )
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | 1 |