题目内容
对任意x∈R,函数f(x)=ax3+ax2+7x不存在极值点的充要条件是( )A.0≤a≤21
B.0<a≤21
C.a<0或a>21
D.a=0或a=21
【答案】分析:由已知函数解析式可得导函数解析式,根据导函数不变号,函数不存在极值点,分别讨论a=0和a≠0时,a的取值,综合讨论结果可得答案.
解答:解:∵f(x)=ax3+ax2+7x
∴f′(x)=3ax2+2ax+7
若a=0,则f′(x)=7>0恒成立,f(x)在R上为增函数,满足条件
若a≠0,则△=4a2-84a≤0时,即0<a≤21时,f′(x)≥0恒成立,f(x)在R上为增函数,满足条件
综上函数f(x)=ax3+ax2+7x不存在极值点的充要条件是0≤a≤21
故选A
点评:本题考查的知识点是函数在某点取得极值的条件,其中a=0这种情况易被忽略.
解答:解:∵f(x)=ax3+ax2+7x
∴f′(x)=3ax2+2ax+7
若a=0,则f′(x)=7>0恒成立,f(x)在R上为增函数,满足条件
若a≠0,则△=4a2-84a≤0时,即0<a≤21时,f′(x)≥0恒成立,f(x)在R上为增函数,满足条件
综上函数f(x)=ax3+ax2+7x不存在极值点的充要条件是0≤a≤21
故选A
点评:本题考查的知识点是函数在某点取得极值的条件,其中a=0这种情况易被忽略.
练习册系列答案
相关题目
对任意x∈R,函数f(x)同时具有下列性质:①f(x+π)=f(x);②函数f(x)的一条对称轴是x=
,则函数f(x)可以是( )
| π |
| 3 |
A、f(x)=sin(
| ||||
B、f(x)=sin(2x-
| ||||
C、f(x)=cos(2x-
| ||||
D、f(x)=cos(2x-
|