题目内容
19.函数f(x)=x2+lgx-3的一个零点所在区间为( )| A. | $(0,\frac{1}{2})$ | B. | $(\frac{1}{2},1)$ | C. | $(1,\frac{3}{2})$ | D. | $(\frac{3}{2},2)$ |
分析 函数零点左右两边函数值的符号相反,根据函数在一个区间上两个端点的函数值的符号确定是否存在零点.
解答 解:∵f($\frac{3}{2}$)=$\frac{9}{4}$+lg$\frac{3}{2}$-3=-$\frac{3}{4}$+lg$\frac{3}{2}$<-$\frac{3}{4}$+lg$\sqrt{10}$=-$\frac{3}{4}$+$\frac{1}{2}$=-$\frac{1}{4}$<0,
f(2)=4+lg2-3=1+lg2>0,
∴f($\frac{3}{2}$)f(2)<0,
根据零点定理知,
f(x)的零点在区间($\frac{3}{2}$,2)上.
故选:D.
点评 本题考查函数的零点的判定定理,本题解题的关键是求出区间的两个端点的函数值,进行比较,本题是一个基础题.
练习册系列答案
相关题目
9.值域为((0,+∞)的函数是( )
| A. | $y={5^{\frac{1}{2-x}}}$ | B. | $y={({\frac{1}{3}})^{1-x}}$ | C. | $y=\sqrt{1-{2^x}}$ | D. | $y=\sqrt{{{(\frac{1}{2})}^x}-1}$ |
4.已知函数$f(x)=\left\{\begin{array}{l}{(3-a)^x},x≤2\\{log_a}(x-1)+3,x>2\end{array}\right.$是定义域上的单调增函数,则a的取值范围是( )
| A. | [3-$\sqrt{3}$,2) | B. | $(\sqrt{5}-1,\sqrt{3})$ | C. | $(1,\sqrt{3})$ | D. | $(1,3-\sqrt{3})$ |