题目内容
17.数列{an}满足a1=2,且nan+1-(n+1)an=n(n+1)(I)求数列{an}的通项公式;
(Ⅱ)已知bn=(n+1)2,求证:$\frac{1}{{a}_{1}+{b}_{1}}$+$\frac{1}{{a}_{2}+{b}_{2}}$+…+$\frac{1}{{a}_{n}+{b}_{n}}$$<\frac{5}{12}$.
分析 (1)nan+1-(n+1)an=n(n+1),变形为$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=1,利用等差数列的通项公式即可得出.
(2)bn=(n+1)2,可得an+bn=(n+1)(2n+1),n≥2时,$\frac{1}{{a}_{n}+{b}_{n}}$=$\frac{1}{(n+1)(2n+1)}$≤$\frac{1}{2{n}^{2}+2n}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$,利用“裂项求和”即可得出.
解答 (1)解:∵nan+1-(n+1)an=n(n+1),∴$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=1,
∴数列$\{\frac{{a}_{n}}{n}\}$是等差数列,首项为2,公差为1.
∴$\frac{{a}_{n}}{n}$=2+(n-1),∴an=n(n+1).
(2)证明:bn=(n+1)2,
∴an+bn=(n+1)(2n+1),
∴n≥2时,$\frac{1}{{a}_{n}+{b}_{n}}$=$\frac{1}{(n+1)(2n+1)}$≤$\frac{1}{2{n}^{2}+2n}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$,
∴$\frac{1}{{a}_{1}+{b}_{1}}$+$\frac{1}{{a}_{2}+{b}_{2}}$+…+$\frac{1}{{a}_{n}+{b}_{n}}$<$\frac{1}{6}$+$\frac{1}{2}$$[(\frac{1}{2}-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=$\frac{1}{6}+\frac{1}{2}(\frac{1}{2}-\frac{1}{n+1})$=$\frac{5}{12}$.
n=1时,也成立.
∴$\frac{1}{{a}_{1}+{b}_{1}}$+$\frac{1}{{a}_{2}+{b}_{2}}$+…+$\frac{1}{{a}_{n}+{b}_{n}}$<$\frac{5}{12}$.
点评 本题考查了递推关系、等差数列的通项公式、“放缩法”,考查了推理能力与计算能力,属于中档题.
| A. | (0,1) | B. | ($\sqrt{3}$,2) | C. | (0,1)∪($\sqrt{3}$,2) | D. | (0,1)∪(1,2) |
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
| A. | {-2,1} | B. | {-2,0} | C. | {0,2} | D. | {0,1} |