题目内容
设数列{an}的首项a1=a≠| 1 |
| 4 |
|
| 1 |
| 4 |
(Ⅰ)求a2,a3,a4,a5;
(Ⅱ)判断数列{bn}是否为等比数列,并证明你的判断.
分析:(Ⅰ)根据an+1=
,一一代入可求;
(Ⅱ)先通过求出前几项,猜想:{bn}是公比为
的等比数列,再进行证明.
|
(Ⅱ)先通过求出前几项,猜想:{bn}是公比为
| 1 |
| 2 |
解答:解:(Ⅰ)a2=a1+
=a+
,a3=
a2=
a+
.a4=a3+
=
a+
,a5=
a4=
a+
.…(6分)
(Ⅱ)由(Ⅰ)可得b1=a1-
=a-
,b2=a3-
=
(a-
),b3=a5-
=
(a-
).
猜想:{bn}是公比为
的等比数列.
证明如下:因为bn+1=a2n+1-
=
a2n-
=
(a2n-1-
)=
bn(n∈N*),
又a≠
,所以b1=a-
≠0,
所以数列{bn}是首项为a-
,公比为
的等比数列.…(12分)
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 8 |
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 8 |
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 16 |
(Ⅱ)由(Ⅰ)可得b1=a1-
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
猜想:{bn}是公比为
| 1 |
| 2 |
证明如下:因为bn+1=a2n+1-
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
又a≠
| 1 |
| 4 |
| 1 |
| 4 |
所以数列{bn}是首项为a-
| 1 |
| 4 |
| 1 |
| 2 |
点评:本题主要考查数列通项的求解与运用,考查等比数列的证明,属于基础题.
练习册系列答案
相关题目