题目内容
6.在△ABC中,角A、B、C所对的边分别为a、b、c,且满足1+cosA=$\frac{{\sqrt{3}}}{3}$sinA,sin(B+C)=6cosBsinC,则$\frac{b}{c}$的值为( )| A. | $1+\sqrt{6}$ | B. | $1+2\sqrt{2}$ | C. | $1+3\sqrt{2}$ | D. | $1+3\sqrt{3}$ |
分析 1+cosA=$\frac{\sqrt{3}}{3}$sinA,sin2A+cos2A=1,联立解得A=$\frac{2π}{3}$.由sin(B+C)=6cosBsinC,即sinA=6cosBsinC,利用正弦定理余弦定理可得:2a2=3b2-3c2.由余弦定理可得:a2=b2+c2-2bc$cos\frac{2π}{3}$,可得a2=b2+c2+bc.联立解出即可得出.
解答 解:∵1+cosA=$\frac{\sqrt{3}}{3}$sinA,sin2A+cos2A=1,∴$sinA=\frac{\sqrt{3}}{2}$,cosA=-$\frac{1}{2}$,
∴A=$\frac{2π}{3}$.
∵sin(B+C)=6cosBsinC,
∴sinA=6cosBsinC,∴a=6ccosB=6c×$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,化为:2a2=3b2-3c2.
由余弦定理可得:a2=b2+c2-2bc$cos\frac{2π}{3}$,可得a2=b2+c2+bc.
∴b2-2bc-5c2=0,
则$\frac{b}{c}$=1+$\sqrt{6}$.
故选:A.
点评 本题考查了正弦定理余弦定理、和差公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
14.已知直线x+(m2-m)y=4m-1与直线2x-y-5=0垂直,则m的值为( )
| A. | -1 | B. | 2 | C. | -1或2 | D. | 1 |
1.函数y=x2+1的值域是( )
| A. | [0,+∞) | B. | [1,+∞) | C. | (0,+∞) | D. | (1,+∞) |
15.函数f(x)=ax+$\frac{1}{a}$(2-x),其中a>0,记f(x)在区间[0,2]上的最小值为g(a),则函数g(a)的最大值为( )
| A. | $\frac{1}{2}$ | B. | 0 | C. | 1 | D. | 2 |