题目内容
数列{an} 满足a1=2,(n+
)anan+1+2nan+1-2n+1an=0(n∈N+).
(Ⅰ)设bn=
,求数列{bn}的通项公式bn;
(Ⅱ)设cn=
,数列{cn}的前n项和为Sn,求证:
≤Sn<
.
| 1 |
| 2 |
(Ⅰ)设bn=
| 2n |
| an |
(Ⅱ)设cn=
| 1 |
| n(n+1)an+1 |
| 5 |
| 16 |
| 1 |
| 2 |
考点:数列与不等式的综合,数列的求和,数列递推式
专题:综合题
分析:(Ⅰ)由(n+
)anan+1+2nan+1-2n+1an=0(n∈N+),知
-
=n+
,由bn=
,a1=2,知b1=
=
=1,b2-b1= 1+
,b3-b2=2+
,…,bn-bn-1=n-1+
,由累加法能求出数列{bn}的通项公式bn.
(Ⅱ)由bn=
,bn=
,知an=
=
,an+1=
,故cn=
=
=
[
+
-
],故Sn=
[1-(
)n+1•
],由此能证明
≤Sn<
.
| 1 |
| 2 |
| 2n+1 |
| an+1 |
| 2n |
| an |
| 1 |
| 2 |
| 2n |
| an |
| 21 |
| a1 |
| 2 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅱ)由bn=
| n2+1 |
| 2 |
| 2n |
| an |
| 2n | ||
|
| 2n+1 |
| n2+1 |
| 2n+2 |
| (n+1) 2+1 |
| 1 |
| n(n+1)an+1 |
| (n+1)2+1 |
| n(n+1)•2n+2 |
| 1 |
| 2 |
| 1 |
| 2 n+1 |
| 1 |
| n•2n |
| 1 |
| (n+1)•2n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| n+2 |
| n+1 |
| 5 |
| 16 |
| 1 |
| 2 |
解答:
解:(Ⅰ)∵(n+
)anan+1+2nan+1-2n+1an=0(n∈N+),
∴
-
=n+
,
∵bn=
,a1=2,
∴b1=
=
=1,
b2-b1= 1+
,
b3-b2=2+
,
…
bn-bn-1=n-1+
,
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)
=1+(1+
)+(2+
)+…+(n-1+
)
=1+
+
=
.
(Ⅱ)∵bn=
,bn=
,
∴an=
=
,an+1=
,
∴cn=
=
=
•
=
[
+
]
=
[
+
-
],
∴Sn=
(
+
+…+
)+
[(
-
)+(
-
)+…+(
-
)]
=
•
+
[
-
]
=
[1-(
)n+1•
],
∵(
)n+1•
=(
)n+1•(1+
)递减,
∴0<(
)n+1•
≤(
)1+1•
=
,
∴
≤
[1-(
)n+1•
]<
,
即
≤Sn<
.
| 1 |
| 2 |
∴
| 2n+1 |
| an+1 |
| 2n |
| an |
| 1 |
| 2 |
∵bn=
| 2n |
| an |
∴b1=
| 21 |
| a1 |
| 2 |
| 2 |
b2-b1= 1+
| 1 |
| 2 |
b3-b2=2+
| 1 |
| 2 |
…
bn-bn-1=n-1+
| 1 |
| 2 |
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)
=1+(1+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=1+
| n-1 |
| 2 |
| n(n-1) |
| 2 |
| n2+1 |
| 2 |
(Ⅱ)∵bn=
| n2+1 |
| 2 |
| 2n |
| an |
∴an=
| 2n | ||
|
| 2n+1 |
| n2+1 |
| 2n+2 |
| (n+1) 2+1 |
∴cn=
| 1 |
| n(n+1)an+1 |
| (n+1)2+1 |
| n(n+1)•2n+2 |
=
| 1 |
| 2 |
| n2+2n+2 |
| n(n+1)•2n+1 |
=
| 1 |
| 2 |
| n2+n |
| n(n+1)•2n+1 |
| n+2 |
| n(n+1)•2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2 n+1 |
| 1 |
| n•2n |
| 1 |
| (n+1)•2n+1 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 2 2 |
| 1 |
| 2 3 |
| 1 |
| 2 n+1 |
| 1 |
| 2 |
| 1 |
| 1×2 |
| 1 |
| 2×22 |
| 1 |
| 2×22 |
| 1 |
| 3×23 |
| 1 |
| n•2 n |
| 1 |
| (n+1)•2 n+1 |
=
| 1 |
| 2 |
| ||||
1-
|
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| (n+1)•2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| n+2 |
| n+1 |
∵(
| 1 |
| 2 |
| n+2 |
| n+1 |
| 1 |
| 2 |
| 1 |
| n+1 |
∴0<(
| 1 |
| 2 |
| n+2 |
| n+1 |
| 1 |
| 2 |
| 1+2 |
| 1+1 |
| 3 |
| 8 |
∴
| 5 |
| 16 |
| 1 |
| 2 |
| 1 |
| 2 |
| n+2 |
| n+1 |
| 1 |
| 2 |
即
| 5 |
| 16 |
| 1 |
| 2 |
点评:本题考查数列、不等式知识,考查化归与转化、分类与整合的数学思想,综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要注意培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关题目
若对任意的x∈R,函数f(x)满足f(x+1)=-f(x),且f(2013)=-2013,则f(-1)=( )
| A、1 | B、-1 |
| C、2013 | D、-2013 |