题目内容

数列{an} 满足a1=2,(n+
1
2
)anan+1+2nan+1-2n+1an=0
(n∈N+).
(Ⅰ)设bn=
2n
an
,求数列{bn}的通项公式bn
(Ⅱ)设cn=
1
n(n+1)an+1
,数列{cn}的前n项和为Sn,求证:
5
16
Sn
1
2
考点:数列与不等式的综合,数列的求和,数列递推式
专题:综合题
分析:(Ⅰ)由(n+
1
2
)anan+1+2nan+1-2n+1an=0
(n∈N+),知
2n+1
an+1
-
2n
an
=n+
1
2
,由bn=
2n
an
,a1=2,知b1=
21
a1
=
2
2
=1
b2-b1= 1+
1
2
b3-b2=2+
1
2
,…,bn-bn-1=n-1+
1
2
,由累加法能求出数列{bn}的通项公式bn
(Ⅱ)由bn=
n2+1
2
,bn=
2n
an
,知an=
2n
n2+1
2
=
2n+1
n2+1
an+1=
2n+2
(n+1) 2+1
,故cn=
1
n(n+1)an+1
=
(n+1)2+1
n(n+1)•2n+2
=
1
2
[
1
2 n+1
+
1
n•2n
-
1
(n+1)•2n+1
]
,故Sn=
1
2
[1-(
1
2
)
n+1
n+2
n+1
]
,由此能证明
5
16
Sn
1
2
解答: 解:(Ⅰ)∵(n+
1
2
)anan+1+2nan+1-2n+1an=0
(n∈N+),
2n+1
an+1
-
2n
an
=n+
1
2

∵bn=
2n
an
,a1=2,
b1=
21
a1
=
2
2
=1

b2-b1= 1+
1
2

b3-b2=2+
1
2


bn-bn-1=n-1+
1
2

∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1
=1+(1+
1
2
)+(2+
1
2
)+…+(n-1+
1
2

=1+
n-1
2
+
n(n-1)
2
=
n2+1
2

(Ⅱ)∵bn=
n2+1
2
,bn=
2n
an

an=
2n
n2+1
2
=
2n+1
n2+1
an+1=
2n+2
(n+1) 2+1

∴cn=
1
n(n+1)an+1
=
(n+1)2+1
n(n+1)•2n+2

=
1
2
n2+2n+2
n(n+1)•2n+1

=
1
2
[
n2+n
n(n+1)•2n+1
+
n+2
n(n+1)•2n+1
]

=
1
2
[
1
2 n+1
+
1
n•2n
-
1
(n+1)•2n+1
]

Sn=
1
2
(
1
2 2
+
1
2 3
+…+
1
2 n+1
)+
1
2
[(
1
1×2
-
1
22
)+(
1
22
-
1
23
)+…+
(
1
n•2 n
-
1
(n+1)•2 n+1
)]

=
1
2
1
2 2
(1-
1
2 n
)
1-
1
2
+
1
2
[
1
2
-
1
(n+1)•2n+1
]

=
1
2
[1-(
1
2
)
n+1
n+2
n+1
]

(
1
2
)
n+1
n+2
n+1
=(
1
2
)
n+1
•(1+
1
n+1
)
递减,
∴0<(
1
2
)
n+1
n+2
n+1
(
1
2
)
1+1
1+2
1+1
=
3
8

5
16
1
2
[1-(
1
2
)
n+1
n+2
n+1
]<
1
2

5
16
Sn
1
2
点评:本题考查数列、不等式知识,考查化归与转化、分类与整合的数学思想,综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要注意培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网