题目内容

19.设集合M={x|x2-2ax-1≤0,a>0},集合N={x|x2+2x-3>0},若M∩N中恰有一个整数,则实数a的取值范围是(  )
A.(1,+∞)B.$(0,\frac{3}{4})$C.$[\frac{3}{4},\frac{4}{3})$D.$[\frac{3}{4},+∞)$

分析 先求解一元二次不等式化简集合M,N,然后分析集合B的左端点的大致位置,结合M∩N中恰含有一个整数得集合B的右端点的范围,列出无理不等式组后进行求解.

解答 解:由x2+2x-3>0,得:x<-3或x>1.
由x2-2ax-1≤0,得:a-$\sqrt{{a}^{2}+1}$≤x≤a+$\sqrt{{a}^{2}+1}$.
所以,N={x|x2+2x-3>0}={x|x<-3或x>1},
M={x|x2-2ax-1≤0,a>0}={x|a-$\sqrt{{a}^{2}+1}$≤x≤a+$\sqrt{{a}^{2}+1}$}.
因为a>0,所以a+1>$\sqrt{{a}^{2}+1}$,则a-$\sqrt{{a}^{2}-1}$>-1且小于0.
由M∩N中恰含有一个整数,所以2≤a+$\sqrt{{a}^{2}+1}$<3.
即$\left\{\begin{array}{l}{a+\sqrt{{a}^{2}+1}≥2}\\{a+\sqrt{{a}^{2}+1}<3}\end{array}\right.$,.
解得$\frac{3}{4}$≤a<$\frac{4}{3}$.
所以,满足A∩B中恰含有一个整数的实数a的取值范围是[$\frac{3}{4}$,$\frac{4}{3}$).
故选C.

点评 本题考查了交集及其运算,考查了数学转化思想,训练了无理不等式的解法,求解无理不等式是该题的一个难点.此题属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网