ÌâÄ¿ÄÚÈÝ

19£®ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÇÒ¹ý¶¨µãM£¨1£¬$\frac{\sqrt{2}}{2}$£©
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªÖ±Ïßl£ºy=kx-$\frac{1}{3}$£¨k¡ÊR£©ÓëÍÖÔ²C½»ÓÚA¡¢BÁ½µã£¬ÊÔÎÊÔÚyÖáÉÏÊÇ·ñ´æÔÚ¶¨µãP£¬Ê¹µÃÒÔÏÒABΪֱ¾¶µÄÔ²ºã¹ýPµã£¿Èô´æÔÚ£¬Çó³öPµãµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©Í¨¹ý½«µãP´úÈëÍÖÔ²·½³Ì²¢ÀûÓÃÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬¼ÆËã¼´µÃ½áÂÛ£»
£¨2£©ÏȼÙÉè´æÔÚÒ»¸ö¶¨µãP£¬Ê¹µÃÒÔABΪֱ¾¶µÄÔ²ºã¹ý¶¨µã£¬ÔÙÓô¹Ö±Ê±£¬$\overrightarrow{PA}•\overrightarrow{PB}$=0£¬µÃµ½¹ØÓÚÖ±ÏßбÂÊkµÄ·½³Ì£¬Çók£¬ÈôÄÜÇó³ö£¬Ôò´æÔÚ£¬ÈôÇó²»³ö£¬Ôò²»´æÔÚ£®

½â´ð ½â£º£¨1£©ÓÉÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÇÒ¹ý¶¨µãM£¨1£¬$\frac{\sqrt{2}}{2}$£©£¬µÃ$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬$\frac{1}{{a}^{2}}+\frac{\frac{1}{2}}{{b}^{2}}$=1£¬½âµÃ£ºa=$\sqrt{2}$£¬b=1£¬
ËùÒÔÍÖÔ²CµÄ·½³ÌÊÇ$\frac{{x}^{2}}{2}+{y}^{2}$=1£»
£¨2£©µ±Ö±ÏßlÓëxÖáÆ½ÐÐʱ£¬ÒÔABΪֱ¾¶µÄÔ²·½³ÌΪ${x}^{2}+£¨y+\frac{1}{3}£©^{2}=£¨\frac{4}{3}£©^{2}$
µ±Ö±ÏßlÓëyÖáÖØºÏʱ£¬ÒÔABΪֱ¾¶µÄÔ²·½³ÌΪx2+y2=1
ËùÒÔÁ½Ô²µÄÇеãΪµã£¨0£¬1£©
ËùÇóµÄµãPΪµã£¨0£¬1£©£¬Ö¤Ã÷ÈçÏ£®
Ö±Ïßl£ºy=kx-$\frac{1}{3}$£¨k¡ÊR£©ÓëÍÖÔ²·½³ÌÁªÁ¢µÃ£¨18k2+9£©x2-12kx-16=0
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Ôòx1+x2=$\frac{12k}{18{k}^{2}+9}$£¬x1x2=-$\frac{16}{18{k}^{2}+9}$£¬
$\overrightarrow{PA}•\overrightarrow{PB}$=£¨1+k2£©x1x2-$\frac{4}{3}$k£¨x1+x2£©+$\frac{16}{9}$
=£¨1+k2£©•£¨-$\frac{16}{18{k}^{2}+9}$£©-$\frac{4}{3}$k•$\frac{12k}{18{k}^{2}+9}$+$\frac{16}{9}$=0£¬
ËùÒÔ$\overrightarrow{PA}¡Í\overrightarrow{PB}$£¬¼´ÒÔABΪֱ¾¶µÄÔ²¹ýµã£¨0£¬1£©
ËùÒÔ´æÔÚÒ»¸ö¶¨µãP£¬Ê¹µÃÒÔABΪֱ¾¶µÄÔ²ºã¹ý¶¨µãP£¨0£¬1£©£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²£¬ÍÖÔ²ÓëÖ±ÏßµÄ×ÛºÏÔËÓã¬ÁíÍ⣬»¹½áºÏÁËÏòÁ¿ÖªÊ¶£¬×ÛºÏÐÔÇ¿£¬ÐëÈÏÕæ·ÖÎö£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø