题目内容
4.某地区有高中学校10所、初中学校30所,小学学校60所,现采用分层抽样的方法从这些学校中抽取20所学校对学生进行体质健康检查,则应抽取初中学校6所.分析 从100所学校抽取20所学校做样本,样本容量与总体的个数的比为1:5,得到每个个体被抽到的概率,即可得到结果.
解答 解:某城地区有学校10+30+60=100所,
现在采用分层抽样方法从所有学校中抽取20所,
每个个体被抽到的概率是$\frac{20}{100}$=$\frac{1}{5}$,
∴用分层抽样进行抽样,应该选取初中学校$\frac{1}{5}$×30=6人.
故答案为:6.
点评 本题主要考查分层抽样,解题的关键是理解在抽样过程中每个个体被抽到的概率相等,属于基础题.
练习册系列答案
相关题目
1.已知函数f(x)=$\frac{9x}{1+a{x}^{2}}$(a>0),则f(x)在[$\frac{1}{2}$,2]上的最大值为( )
| A. | 0 | B. | $\frac{18}{4a+1}$ | ||
| C. | $\frac{18}{a+4}$或$\frac{18}{4a+1}$ | D. | $\frac{18}{4a+1}$或$\frac{18}{a+4}$或$\frac{9\sqrt{a}}{2a}$ |
9.下列函数中,在R上单调递增的是( )
| A. | y=x${\;}^{\frac{1}{3}}$ | B. | y=log2x | C. | y=|x| | D. | y=0.5x |
16.等差数列{an}的前n项和是Sn,若a1+a2=5,a5+a6=13,则S6的值为( )
| A. | 18 | B. | 27 | C. | 36 | D. | 46 |
13.经过点A(2,3)和点B(4,7)的直线方程是( )
| A. | 2x+y-7=0 | B. | 2x-y+1=0 | C. | 2x-y-1=0 | D. | -2y+4=0 |
14.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-3$\overrightarrow{b}$平行,则k的值为( )
| A. | 3 | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{3}$ |