ÌâÄ¿ÄÚÈÝ
15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=2+2sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©ÒÔ×ø±êÔµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵ£®£¨1£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌÒÔ¼°ÇúÏßCµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßCµÄÁ½¸ö½»µã·Ö±ðΪM£¬N£¬Ö±ÏßlÓëxÖáµÄ½»µãΪP£¬Çó|PM|•|PN|µÄÖµ£®
·ÖÎö £¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ì£®ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=2+2sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®°Ñ¦Ñ2=x2+y2£¬y=¦Ñsin¦È£¬¿ÉµÃCµÄ¼«×ø±ê·½³Ì£®
£¨II£©P£¨1£¬0£©£®°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄ·½³ÌΪ£º${t}^{2}-3\sqrt{2}t$+1=0£¬|PM|•|PN|=|t1•t2|£®
½â´ð ½â£º£¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃ£ºx+y-1=0£®
ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=2+2sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃ£ºx2+£¨y-2£©2=4£®
°Ñ¦Ñ2=x2+y2£¬y=¦Ñsin¦È£¬¿ÉµÃCµÄ¼«×ø±ê·½³ÌΪ£º¦Ñ=4sin¦È£®
£¨II£©P£¨1£¬0£©£®°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄ·½³ÌΪ£º${t}^{2}-3\sqrt{2}t$+1=0£¬
t1+t2=3$\sqrt{2}$£¬t1•t2=1£¬
¡à|PM|•|PN|=|t1•t2|=1£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³ÌµÄÓ¦ÓᢲÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÔ²ÏཻÏÒ³¤ÎÊÌ⣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | a£¼0£¬b£¾0 | B£® | a£¾0£¬b£¾0 | C£® | a£¼0£¬b£¼0 | D£® | a£¾0£¬b£¼0 |
| A£® | -1 | B£® | 1 | C£® | 3 | D£® | 7 |
| A£® | $£¨{-¡Þ£¬-\frac{1}{2}}]¡È[{1£¬+¡Þ}£©$ | B£® | $£¨{-¡Þ£¬-1}]¡È[{\frac{1}{2}£¬+¡Þ}£©$ | C£® | $£¨{-¡Þ£¬0}]¡È[{\frac{1}{2}£¬+¡Þ}£©$ | D£® | $£¨{-¡Þ£¬-\frac{1}{2}}]¡È[{0£¬+¡Þ}£©$ |
| A£® | $\frac{1}{2}$ | B£® | 1 | C£® | -$\frac{1}{2}$ | D£® | 1 |
| A£® | [$\frac{1}{9}$£¬9] | B£® | £¨-¡Þ£¬$\frac{1}{9}$] | C£® | [$\frac{1}{2}$£¬2] | D£® | £¨0£¬$\frac{1}{9}$]¡È[9£¬+¡Þ] |