ÌâÄ¿ÄÚÈÝ

15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=2+2sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵ£®
£¨1£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌÒÔ¼°ÇúÏßCµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßCµÄÁ½¸ö½»µã·Ö±ðΪM£¬N£¬Ö±ÏßlÓëxÖáµÄ½»µãΪP£¬Çó|PM|•|PN|µÄÖµ£®

·ÖÎö £¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ì£®ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=2+2sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®°Ñ¦Ñ2=x2+y2£¬y=¦Ñsin¦È£¬¿ÉµÃCµÄ¼«×ø±ê·½³Ì£®
£¨II£©P£¨1£¬0£©£®°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄ·½³ÌΪ£º${t}^{2}-3\sqrt{2}t$+1=0£¬|PM|•|PN|=|t1•t2|£®

½â´ð ½â£º£¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃ£ºx+y-1=0£®
ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=2+2sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃ£ºx2+£¨y-2£©2=4£®
°Ñ¦Ñ2=x2+y2£¬y=¦Ñsin¦È£¬¿ÉµÃCµÄ¼«×ø±ê·½³ÌΪ£º¦Ñ=4sin¦È£®
£¨II£©P£¨1£¬0£©£®°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄ·½³ÌΪ£º${t}^{2}-3\sqrt{2}t$+1=0£¬
t1+t2=3$\sqrt{2}$£¬t1•t2=1£¬
¡à|PM|•|PN|=|t1•t2|=1£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³ÌµÄÓ¦ÓᢲÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÔ²ÏཻÏÒ³¤ÎÊÌ⣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø