题目内容

20.已知命题P:?x∈R,x2+2x-1≥0,则¬P是(  )
A.?x0∈R,x02+2x0-1<0B.?x∈R,x2+2x-1≤0
C.?x0∈R,x02+2x0-1≥0D.?x∈R,x2+2x-1<0

分析 “全称命题”的否定一定是“特称命题”,写出结果即可.

解答 解:∵“全称命题”的否定一定是“特称命题”,
∴命题P:?x∈R,x2+2x-1≥0,则¬P是?x0∈R,x02+2x0-1<0,
故选:A

点评 本题考查命题的否定.“全称量词”与“存在量词”正好构成了意义相反的表述.如“对所有的…都成立”与“至少有一个…不成立”;“都是”与“不都是”等,所以“全称命题”的否定一定是“存在性命题”,“存在性命题”的否定一定是“全称命题”.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网