题目内容
f(x)=
cos2
x+sin
xcos
x.
(1)将f(x)化为Asin(ωx+?)+k(ω>0,0<φ<
)的形式;
(2)写出f(x)的最值及相应的x值;
(3)若-
<α<
,且f(α)=
+
,求cos2α.
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(1)将f(x)化为Asin(ωx+?)+k(ω>0,0<φ<
| π |
| 2 |
(2)写出f(x)的最值及相应的x值;
(3)若-
| π |
| 3 |
| π |
| 6 |
| 3 |
| 5 |
| ||
| 2 |
分析:(1)根据二倍角公式与两角和的正弦公式可得答案.
(2)利用x+
=2kπ-
,k∈Z,进而求出函数的最大值以及取最大值时x的数值.利用x+
=2kπ+
,k∈Z,进而求出函数的最小值以及取最小值时x的数值.
(3)由题意可得sin(α+
)=
,进而结合题意得到cos(α+
)=
,即可得到sin(2α+
), cos(2α+
),
所以得到cos2α=cos[(2α+
)-
]的数值.
(2)利用x+
| π |
| 3 |
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
(3)由题意可得sin(α+
| π |
| 3 |
| 3 |
| 5 |
| π |
| 3 |
| 4 |
| 5 |
| 2π |
| 3 |
| 2π |
| 3 |
所以得到cos2α=cos[(2α+
| 2π |
| 3 |
| 2π |
| 3 |
解答:解:(1)由题意可得:
f(x)=
cos2
x+sin
xcos
x
=
•
+
sinx
=sin(x+
)+
.
(2)当x+
=2kπ-
,k∈Z,即x=2kπ-
,k∈Z时,
则f(x)得到最小值-1+
.
当x+
=2kπ+
,k∈Z,即x=2kπ+
,k∈Z时,
则f(x)得到最大值1+
.
(3)由f(α)=sin(α+
)+
=
+
可得sin(α+
)=
,
∵-
<α<
,
∴0<α+
<
,
∴cos(α+
)=
,
∴sin(2α+
)=2sin(α+
)•cos(α+
)=
cos(2α+
)=2cos2(α+
)-1=
∴cos2α=cos[(2α+
)-
]
=cos(2α+
)cos
+sin(2α+
)sin
=
.
f(x)=
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 3 |
| 1+cosx |
| 2 |
| 1 |
| 2 |
=sin(x+
| π |
| 3 |
| ||
| 2 |
(2)当x+
| π |
| 3 |
| π |
| 2 |
| 5π |
| 6 |
则f(x)得到最小值-1+
| ||
| 2 |
当x+
| π |
| 3 |
| π |
| 2 |
| π |
| 6 |
则f(x)得到最大值1+
| ||
| 2 |
(3)由f(α)=sin(α+
| π |
| 3 |
| ||
| 2 |
| 3 |
| 5 |
| ||
| 2 |
| π |
| 3 |
| 3 |
| 5 |
∵-
| π |
| 3 |
| π |
| 6 |
∴0<α+
| π |
| 3 |
| π |
| 2 |
∴cos(α+
| π |
| 3 |
| 4 |
| 5 |
∴sin(2α+
| 2π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 24 |
| 25 |
cos(2α+
| 2π |
| 3 |
| π |
| 3 |
| 7 |
| 25 |
∴cos2α=cos[(2α+
| 2π |
| 3 |
| 2π |
| 3 |
=cos(2α+
| 2π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
=
24
| ||
| 50 |
点评:解决此类问题的关键是熟练掌握二倍角公式与两角和的正弦公式,以及正弦函数的一个性质.
练习册系列答案
相关题目