题目内容

11.函数y=lgsinx的定义域是{x|2kπ<x<2kπ+π,k∈Z},函数y=$\frac{5tanx}{1+2sinx}$的定义域是{x|$x≠\frac{π}{2}+kπ$,且x$≠2kπ-\frac{5π}{6}$且x$≠2kπ-\frac{π}{6}$,k∈Z}.

分析 由对数式的真数大于0,求解三角不等式得函数y=lgsinx的定义域;由分式的分母不为0,结合正切函数的定义域求得函数y=$\frac{5tanx}{1+2sinx}$的定义域.

解答 解:由sinx>0,得2kπ<x<2kπ+π,k∈Z.
∴函数y=lgsinx的定义域是{x|2kπ<x<2kπ+π,k∈Z};
要使函数y=$\frac{5tanx}{1+2sinx}$有意义,则$\left\{\begin{array}{l}{x≠\frac{π}{2}+kπ,k∈Z}\\{1+2sinx≠0}\end{array}\right.$,
即$x≠\frac{π}{2}+kπ$,且x$≠2kπ-\frac{5π}{6}$且x$≠2kπ-\frac{π}{6}$,k∈Z.
∴函数y=$\frac{5tanx}{1+2sinx}$的定义域是{x|$x≠\frac{π}{2}+kπ$,且x$≠2kπ-\frac{5π}{6}$且x$≠2kπ-\frac{π}{6}$,k∈Z}.
故答案为:{x|2kπ<x<2kπ+π,k∈Z};{x|$x≠\frac{π}{2}+kπ$,且x$≠2kπ-\frac{5π}{6}$且x$≠2kπ-\frac{π}{6}$,k∈Z}.

点评 本题考查函数的定义域及其求法,考查了正切函数的定义域,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网