题目内容

14.已知a>0,函数f(x)=|$\frac{x-a}{x+2a}$|.
(1)求函数f(x)的零点;
(2)求不等式组$\left\{\begin{array}{l}{x>0}\\{f(x)<\frac{1}{2}}\end{array}\right.$的解集;
(3)记f(x)在区间[0,4]上的最大值为g(a),求g(a)的表达式.

分析 (1)令f(x)=|$\frac{x-a}{x+2a}$|=0,可得函数f(x)的零点;
(2)当x>a时,不等式组$\left\{\begin{array}{l}{x>0}\\{f(x)<\frac{1}{2}}\end{array}\right.$可化为:$\frac{x-a}{x+2a}$<$\frac{1}{2}$,当0<x≤a时,不等式组$\left\{\begin{array}{l}{x>0}\\{f(x)<\frac{1}{2}}\end{array}\right.$可化为:-$\frac{x-a}{x+2a}$<$\frac{1}{2}$,解得不等式组$\left\{\begin{array}{l}{x>0}\\{f(x)<\frac{1}{2}}\end{array}\right.$的解集;
(3)求导分析函数的单调性,进而分类讨论,可得g(a)的表达式.

解答 解:(1)令f(x)=|$\frac{x-a}{x+2a}$|=0,
则x=a,
∴函数f(x)的零点为a;
(2)∵x>0,a>0,
∴x+2a>0,
当x>a时,不等式组$\left\{\begin{array}{l}{x>0}\\{f(x)<\frac{1}{2}}\end{array}\right.$可化为:$\frac{x-a}{x+2a}$<$\frac{1}{2}$,
解得:x∈(a,4a),
当0<x≤a时,不等式组$\left\{\begin{array}{l}{x>0}\\{f(x)<\frac{1}{2}}\end{array}\right.$可化为:-$\frac{x-a}{x+2a}$<$\frac{1}{2}$,
解得:x∈(0,a],
综上可得:不等式组$\left\{\begin{array}{l}{x>0}\\{f(x)<\frac{1}{2}}\end{array}\right.$的解集为(0,4a);
(3)函数f(x)=|$\frac{x-a}{x+2a}$|=$\left\{\begin{array}{l}-\frac{x-a}{x+2a},0≤x≤a\\ \frac{x-a}{x+2a},x>a\end{array}\right.$,
∴f′(x)=$\left\{\begin{array}{l}\frac{-3a}{(x+2a)^{2}},0≤x≤a\\ \frac{3a}{(x+2a)^{2}},x>a\end{array}\right.$,
故函数f(x)在[0,a]上为减函数,在[a,+∞)上为增函数,
又由f(0)=f(4a)=$\frac{1}{2}$,
故4∈[0,4a],即a≥1时,g(a)=f(0)=$\frac{1}{2}$,
4∈(4a,+∞),即0<a<1时,g(a)=f(4)=$\frac{4-a}{4+2a}$.
综上所述,g(a)=$\left\{\begin{array}{l}\frac{1}{2},a≥1\\ \frac{4-a}{4+2a},0<a<1\end{array}\right.$.

点评 本题考查的知识点是函数的零点,分段函数的应用,利用导数研究函数的单调性,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网