题目内容
【题目】如图,已知点
在圆柱
的底面圆
上,
为圆
的直径.
![]()
(1)若圆柱
的体积
为
,
,
,求异面直线
与
所成的角(用反三角函数值表示结果);
(2)若圆柱
的轴截面是边长为2的正方形,四面体
的外接球为球
,求
两点在球
上的球面距离.
【答案】(1)异面直线
与
所成的角为
;(2)
.
【解析】
(1)由题设条件,以O为原点,分别以OB,OO1为y,z轴的正向,并以AB的垂直平分线为x轴,建立空间直角坐标系,求出
与
的坐标,用公式求出线线角的余弦即得.
(2)由题意找到球心并求得R与∠AGB,即可求出A,B两点在球G上的球面距离.
(1)以O为原点,分别以OB,OO1为y,z轴的正向,并以AB的垂直平分线为x轴,
建立空间直角坐标系.
由题意圆柱
的体积
为
=4
,解得AA1=3.
易得各点的坐标分别为:A(0,﹣2,0),
,A1(0,﹣2,3),B(0,2,0).
得
,
,
设
与
的夹角为θ,异面直线A1B与AP所成的角为α,
则
,得
,
即异面直线A1B与AP所成角的大小为arccos
.
![]()
(2)由题意得AA1=2,OB=1,四面体
的外接球球心
在A1B的中点,所以R=
,此时
=
,所以
两点在球
上的球面距离为
.
【题目】近年电子商务蓬勃发展,
年某网购平台“双
”一天的销售业绩高达
亿元人民币,平台对每次成功交易都有针对商品和快递是否满意的评价系统.从该评价系统中选出
次成功交易,并对其评价进行统计,网购者对商品的满意率为
,对快递的满意率为
,其中对商品和快递都满意的交易为
次.
(1)根据已知条件完成下面的
列联表,并回答能否有
的把握认为“网购者对商品满意与对快递满意之间有关系”?
对快递满意 | 对快递不满意 | 合计 | |
对商品满意 |
| ||
对商品不满意 | |||
合计 |
|
(2)为进一步提高购物者的满意度,平台按分层抽样方法从中抽取
次交易进行问卷调查,详细了解满意与否的具体原因,并在这
次交易中再随机抽取
次进行电话回访,听取购物者意见.求电话回访的
次交易至少有一次对商品和快递都满意的概率.
附:
(其中
为样本容量)
|
|
|
|
|
|
|
|
|
|
|
|