题目内容
求下列函数的导数:
(1)y=x3+log2x;
(2)y=xnex;
(3)y=
;
(4)y=(x+1)99;
(5)y=2e-x;
(6)y=2xsin(2x+5).
(1)y=x3+log2x;
(2)y=xnex;
(3)y=
| x3-1 |
| sinx |
(4)y=(x+1)99;
(5)y=2e-x;
(6)y=2xsin(2x+5).
考点:简单复合函数的导数,导数的乘法与除法法则
专题:导数的概念及应用
分析:直接利用导数的运算法则及基本初等函数的导数公式求解.
解答:
解:(1)∵y=x3+log2x,∴y′=3x2+
;
(2)∵y=xnex,∴y′=(xn)′ex+xn(ex)′=nxn-1ex+xnex=(nxn-1+xn)ex;
(3)∵y=
,∴y′=
=
;
(4)∵y=(x+1)99,∴y′=99(x+1)98(x+1)′=99(x+1)98;
(5)∵y=2e-x,∴y′=2e-x(-x)′=-2e-x;
(6)∵y=2xsin(2x+5),∴y′=(2x)′[sin(2x+5)]+2x[sin(2x+5)]′=2sin(2x+5)+4xcos(2x+5).
| 1 |
| xln2 |
(2)∵y=xnex,∴y′=(xn)′ex+xn(ex)′=nxn-1ex+xnex=(nxn-1+xn)ex;
(3)∵y=
| x3-1 |
| sinx |
| (x3-1)′sinx-(x3-1)(sinx)′ |
| sin2x |
| 3x2sinx-(x3-1)cosx |
| sin2x |
(4)∵y=(x+1)99,∴y′=99(x+1)98(x+1)′=99(x+1)98;
(5)∵y=2e-x,∴y′=2e-x(-x)′=-2e-x;
(6)∵y=2xsin(2x+5),∴y′=(2x)′[sin(2x+5)]+2x[sin(2x+5)]′=2sin(2x+5)+4xcos(2x+5).
点评:本题考查了导数的运算法则,考查了基本初等函数的导数公式,考查了简单的复合函数的导数,是中档题.
练习册系列答案
相关题目
sin
cos
-cos
sin
的值是( )
| 25π |
| 12 |
| 11π |
| 6 |
| 11π |
| 12 |
| 5π |
| 6 |
A、-
| ||||
B、
| ||||
C、-sin
| ||||
D、sin
|