题目内容

20.已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,分别求下列各式的值
(1)x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$ (2)x2+x-2  (3)$\frac{{x}^{\frac{3}{2}+}{x}^{-\frac{3}{2}}+2}{x+{x}^{-1}+3}$.

分析 (1)由x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,可得x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$=±$\sqrt{({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})^{2}-4}$.
(2)由x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,可得x+x-1=$({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})^{2}$-2,x2+x-2=(x+x-12-2.
(3)利用立方和公式可得:$\frac{{x}^{\frac{3}{2}+}{x}^{-\frac{3}{2}}+2}{x+{x}^{-1}+3}$=$\frac{({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})(x+{x}^{-1}-1)+2}{x+{x}^{-1}+3}$.

解答 解:(1)∵x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,∴x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$=±$\sqrt{({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})^{2}-4}$=$±\sqrt{5}$.
(2)∵x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,∴x+x-1=$({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})^{2}$-2=32-2=7.
∴x2+x-2=(x+x-12-2=72-2=47.
(3)$\frac{{x}^{\frac{3}{2}+}{x}^{-\frac{3}{2}}+2}{x+{x}^{-1}+3}$=$\frac{({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})(x+{x}^{-1}-1)+2}{x+{x}^{-1}+3}$=$\frac{3×(7-1)+2}{7+3}$=2.

点评 本题考查了乘法公式、指数幂的运算性质,考查了计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网