题目内容

(1)设x=log32,求
33x-3-3x3x-3-x
的值.
(2)已知log259=a,25b=8.用ab表示log5072.
分析:(1)由x=log32,知3x=2,3-x=
1
2
,故
33x-3-3x
3x-3-x
=
(3x-3-x)(32x+1+3-2x
3x-3-x
=32x+3-2x+1=(3x+3-x2-1,由此能求出结果.
(2)由log259=a,25b=8,知log5072=
log2572
log2550
=
log258+log259
1+log252
,由此能求出结果.
解答:解:(1)∵x=log32,
∴3x=2,3-x=
1
2

33x-3-3x
3x-3-x
=
(3x-3-x)(32x+1+3-2x
3x-3-x

=32x+3-2x+1
=(3x+3-x2-1
=(2+
1
2
2-1
=
21
4

(2)∵log259=a,25b=8,
∴log5072=
log2572
log2550

=
log258+log259
1+log252

=
a+b
1+
b
3

=
3a+3b
b+3
点评:本题考查对数的去处性质,是基础题,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网