题目内容
若tanθ=2,求下列各式的值.
(1)
;
(2)3sin2θ-2sinθcosθ-1.
(1)
| 3sinθ-2cosθ |
| 2sinθ+cosθ |
(2)3sin2θ-2sinθcosθ-1.
(1)原式=
,
把tanθ=2代入,
得原式=
=
.
(2)3sin2θ-2sinθcosθ-1
=3sin2θ-2sinθcosθ-sin2θ-cos2θ
=2sin2θ-2sinθcosθ-cos2θ
=cos2θ(2tan2θ-2tanθ-1)
∵tanθ=2
∴
=2得cos2θ=
,
则原式=
(2•22-2•2-1)=
.
| 3tanθ-2 |
| 2tanθ+1 |
把tanθ=2代入,
得原式=
| 3sinθ-2cosθ |
| 2sinθ+cosθ |
| 4 |
| 5 |
(2)3sin2θ-2sinθcosθ-1
=3sin2θ-2sinθcosθ-sin2θ-cos2θ
=2sin2θ-2sinθcosθ-cos2θ
=cos2θ(2tan2θ-2tanθ-1)
∵tanθ=2
∴
| sinθ |
| cosθ |
| 1 |
| 5 |
则原式=
| 1 |
| 5 |
| 3 |
| 5 |
练习册系列答案
相关题目