题目内容
设复数(是虚数单位),则( )
A. B. C. D.
经过直线:上的点,向圆:引切线,切点为,则切线长的最小值为( )
某院校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在甲专业抽取的学生人数为 人.
设是定义在上的奇函数,且当时, ,若对任意的,关于的不等式恒成立,则实数的取值范围是( )
如图,椭圆()经过点,且离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)经过点,且斜率为的直线与椭圆交于不同两点,(均异于点),证明:直线与的斜率之和为.
复数的共轭复数( )
已知函数,.
(1)设.
①若函数在处的切线过点,求的值;
②当时,若函数在上没有零点,求的取值范围;
(2)设函数,且(),求证:当时,.
已知,如果存在使得成立,求的取值范围.
已知是满足下列性质的所有函数组成的集合:对于函数,使得对函数定义域内的任意两个自变量,均有成立.
(1)已知函数,,判断与集合的关系,并说明理由;
(2)已知函数,求实数的取值范围;
(3)是否存在实数,使得,属于集合?若存在,求的取值范围,若不存在,请说明理由.