题目内容

已知x>0,y>0,lg2x+lg8y=lg2,则
1
x
+
1
y
的最小值是
 
考点:基本不等式在最值问题中的应用,对数的运算性质
专题:函数的性质及应用
分析:由对数的运算性质,lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,结合题意可得,x+3y=1;再利用1的代换结合基本不等式求解即可.
解答: 解:lg2x+lg8y=lg2x+lg23y=(x+3y)lg2,
又由lg2x+lg8y=lg2,
则x+3y=1,
进而由基本不等式的性质可得,
1
x
+
1
y
=(x+3y)(
1
x
+
1
y
)=4+
3y
x
+
x
y
≥4+2
3

当且仅当x=
3
y时取等号,
故答案为:4+2
3
点评:本题考查基本不等式的性质与对数的运算,注意基本不等式常见的变形形式与运用,如本题中,1的代换.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网