题目内容
20.已知点M(2,-3,1)关于原点对称的对称点为N,则|MN|等于( )| A. | 2$\sqrt{13}$ | B. | 2$\sqrt{14}$ | C. | 52 | D. | 56 |
分析 根据空间中点的位置关系可得:点M关于原点的对称点N的坐标就是取原来横坐标、纵坐标、竖坐标数值的相反数,求出N的坐标,利用距离公式求出距离即可.
解答 解:由题意可得:点M(2,-3,1)
所以根据空间中点的位置关系可得:点M关于原点的对称点N的坐标就是取原来横坐标、纵坐标、竖坐标数值的相反数,
所以可得N(-2,3-1).
所以|MN|=$\sqrt{(2+2)^{2}+(-3-3)^{2}+(1+1)^{2}}$=2$\sqrt{14}$.
故选:B.
点评 本题主要考查对称点的坐标的求法,解决此类问题的关键是熟练掌握空间直角坐标系,以及坐标系中点之间的位置关系,距离公式的应用.
练习册系列答案
相关题目
8.已知函数f(x)是定义在R上的偶函数,且对任意x∈R,都有f(x-1)=f(x+3).当x∈[4,5]时,f(x)=2x+1,设函数f(x)在区间[-2,0]上的反函数为f-1(x),则f-1(19)的值为( )
| A. | -log23 | B. | -2log23 | C. | 1-log23 | D. | 3-2log23 |
12.若关于x的不等式x2+ax-2>0在区间[1,2]上有解,则实数a的取值范围为( )
| A. | (-∞,-1) | B. | (-∞,1) | C. | (1,+∞) | D. | (-1,+∞) |
9.已知等差数列{an}中,a2+a4=16,a1=1,则a5的值是( )
| A. | 15 | B. | 30 | C. | 31 | D. | 64 |